Aarskog syndrome, or Aarskog-Scott syndrome, is a very rare genetic disorder caused by a mutation of the X chromosome. This disorder can affect a person’s:
- stature
- facial features
- genitalia
- muscles
- bones
It primarily affects males. However, females may develop a milder version of the disorder. The symptoms usually become apparent by about three years of age. Aarskog syndrome is a lifelong condition without a cure.
Aarskog-Scott syndrome is a genetic disorder that affects the development of many parts of the body. This condition mainly affects males, although females may have mild features of the syndrome.
People with Aarskog-Scott syndrome often have distinctive facial features, such as widely spaced eyes (hypertelorism), a small nose, a long area between the nose and mouth (philtrum), and a widow’s peak hairline. They frequently have mild to moderate short stature during childhood, but their growth usually catches up with that of their peers during puberty.
Hand abnormalities are common in this syndrome and include short fingers (brachydactyly), curved pinky fingers (fifth finger clinodactyly), webbing of the skin between some fingers (cutaneous syndactyly), and a single crease across the palm. Other abnormalities in people with Aarskog-Scott syndrome include heart defects and a split in the upper lip (cleft lip) with or without an opening in the roof of the mouth (cleft palate).
Most males with Aarskog-Scott syndrome have a shawl scrotum, in which the scrotum surrounds the penis instead of hanging below. Less often, they have undescended testes (cryptorchidism) or a soft out-pouching around the belly-button (umbilical hernia) or in the lower abdomen (inguinal hernia).
The intellectual development of people with Aarskog-Scott syndrome varies widely. Some may have mild learning and behavior problems, while others have normal intelligence. In rare cases, severe intellectual disability has been reported.
Generic Change
Mutations in the FGD1 gene are the only known genetic cause of Aarskog-Scott syndrome. The FGD1 gene provides instructions for making a protein that turns on (activates) another protein called Cdc42, which transmits signals that are important for various aspects of development before and after birth.
Mutations in the FGD1 gene lead to the production of an abnormally functioning protein. These mutations disrupt Cdc42 signaling, leading to the wide variety of abnormalities that occur in people with Aarskog-Scott syndrome.
Only about 20 percent of people with this disorder have identifiable mutations in the FGD1 gene. The cause of Aarskog-Scott syndrome in other affected individuals is unknown.
Inheritance Pattern
When caused by FGD1 gene mutations, Aarskog-Scott syndrome is inherited in an X-linked recessive pattern. The FGD1 gene is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition.
In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause Aarskog-Scott syndrome. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females.
Females who carry one altered copy of the FGD1 gene may show mild signs of the condition, such as hypertelorism, short stature, or a widow’s peak hairline. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.
Evidence suggests that Aarskog-Scott syndrome is inherited in an autosomal dominant or autosomal recessive pattern in some families, although the genetic cause of these cases is unknown.
In autosomal dominant inheritance, one copy of the altered gene in each cell is sufficient to cause the disorder. In autosomal recessive inheritance, both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Other Names for This Condition
- Aarskog syndrome
- AAS
- facio-digito-genital dysplasia
- faciodigitogenital syndrome
- faciogenital dysplasia
- FGDY
Signs & Symptoms
Aarskog syndrome primarily affects males. Affected boys exhibit a characteristic set of facial, skeletal, and genital abnormalities. Clinical signs may vary from person to person (clinical heterogeneity), even within families. Males with Aarskog syndrome often have a rounded face with a broad forehead.
Additional characteristic facial features include widely spaced eyes (ocular hypertelorism), drooping (ptosis) of the eyelids, downwardly slanting eyelid folds (palpebral fissures), a small nose with nostrils that are flared forward (anteverted nares), an underdeveloped upper jawbone (maxilliary hypoplasia), and a widow’s peak. Affected individuals may also have an abnormally long groove in the upper lip (philtrum) and a broad nasal bridge.
These children may also have a variety of abnormalities affecting the ears and teeth. Ear abnormalities include low-set ears and thickened, “fleshy” earlobes. Dental abnormalities include missing teeth at birth, delayed eruption of teeth, and underdevelopment of the hard outer covering of teeth (enamel hypoplasia).
Aarskog syndrome is basically a skeletal dysplasia and affected males develop characteristic malformations of the skeletal system including disproportionate short stature; broad, short hands and feet; short, stubby fingers (brachydactyly) with permanent fixation of the fifth fingers in a bent position (clinodactyly); abnormally extendible finger joints; and wide flat feet with bulbous toes.
In addition, affected individuals may have a sunken chest (pectus excavatum), protrusion of portions of the large intestine through an abnormal opening in the muscular lining of the abdominal cavity (inguinal hernia), and a prominent navel (umbilicus). Individuals with Aarskog syndrome may have spinal abnormalities such as incomplete closure of the bones of the spinal column (spina bifida occulta), fusion of the upper bones of the spinal column (cervical vertebrae), and underdevelopment of the “peg-like” projection of the second cervical vertebra (odontoid hypoplasia).
A sign that helps to make a diagnosis in males with Aarskog syndrome are the genital abnormalities, including a characteristic abnormal fold of skin extending around the base of the penis (“shawl” scrotum) and/or failure of one or both of the testes to descend into the scrotum (cryptorchidism). In addition, the urinary opening (meatus) may be located on the underside of the penis (hypospadias) and the scrotum may appear clefted or divided (bifid scrotum).
Intellectual disability has been described in some affected boys but it is not a consistent feature of the disorder. Affected individuals may present with a range of mild learning difficulty and/or behavioral disorders: affected children may exhibit developmental delay during infancy, hyperactivity, attention deficit, impulsivity and opposition. Failure to gain weight and grow at the expected rate (failure to thrive) and development of chronic respiratory infections have also been described.
An additional spectrum of signs and/or symptoms may occur less frequently, including congenital heart defects; abnormal side-to-side curvature of the spine (scoliosis); additional pairs of ribs; incomplete closure of the roof of the mouth (cleft palate) and/or a vertical groove in the upper lip (cleft lip); mild webbing of the fingers; and a short neck with or without webbing. Additional eye abnormalities may be present including crossed eyes (strabismus), farsightedness (hyperopia), and paralysis of certain eye muscles (ophthalmoplegia).
Causes
Although Aarskog syndrome is a clinically and genetically heterogeneous condition, the best characterized form of the disorder is inherited as an X-linked trait and caused by changes (mutations) in the FGD1 gene. Aarskog syndrome primarily affects males. However, females who carry a single copy of a FGD1 gene mutation (heterozygotes) may exhibit some of the symptoms associated with the disorder. FGD1 gene mutations have been identified in approximately 22% of affected males, therefore, it is likely that other genes not yet identified may also be associated with this condition.
X-linked recessive genetic disorders are conditions caused by mutations in a gene located on the X chromosome. Females have two X chromosomes but one of the X chromosomes is “turned off” to correct a dosage imbalance and almost all of the genes on that chromosome are silenced (inactivated) through a process defined as X-chromosome inactivation.
Females who have a disease causing mutation on one of their X chromosomes are carriers for that disorder. Carrier females usually do not display symptoms of the disorder because it is usually the X chromosome with the abnormal gene that is “silenced”. Males have one only X chromosome and, if they inherit the X chromosome that contains a disease gene, they will develop the disease. In turn, males with a X-linked disorder will pass the disease gene to all of their daughters, who will be carriers of the trait (obligate carriers).
Males cannot pass X-linked traits to their sons because they always pass their Y chromosome instead of their X chromosome to male offspring. Female carriers of an X-linked disorder have a 25% chance with each pregnancy to have a carrier daughter (like themselves), a 25% chance to have a non-carrier daughter, a 25% chance to have a son affected with the disease, and a 25% chance to have an unaffected son.
Affected Populations
Approximately 50 reports of Aarskog syndrome confirmed by identification of a FGD1 gene mutation have been published worldwide. However, it is possible that some mildly affected children may be unrecognized, making it difficult to determine the true frequency of this condition in the general population. An estimated population prevalence of Aarskog syndrome is equal to or slightly lower than to 1/25,000.
Related Disorders
Symptoms of the following disorders can be similar to those of Aarskog syndrome. Comparisons may be useful for a differential diagnosis:
Noonan syndrome is a relatively common genetic disorder characterized by short stature, dysmorphic facial features and congenital heart disease. The disorder is characterized by a wide spectrum of symptoms and physical features that vary greatly in range and severity. In many affected individuals, associated abnormalities include a distinctive facial appearance; a broad or webbed neck; a low posterior hairline; a typical chest deformity and short stature.
Characteristic abnormalities of the head and facial (craniofacial) area may include widely set eyes (ocular hypertelorism); skin folds that may cover the eyes’ inner corners (epicanthal folds); drooping of the upper eyelids (ptosis); a small jaw (micrognathia); a depressed nasal root; a short nose with broad base; and low-set, posteriorly rotated ears (pinnae). Distinctive skeletal malformations are also typically present, such as abnormalities of the breastbone (sternum), curvature of the spine (kyphosis and/or scoliosis), and outward deviation of the elbows (cubitus valgus).
Many infants with Noonan syndrome also have heart (cardiac) defects, such as obstruction of proper blood flow from the lower right chamber of the heart to the lungs (pulmonary valvular stenosis). Additional abnormalities may include malformations of certain blood and lymph vessels, blood clotting and platelet deficiencies, learning difficulties or mild intellectual disability, failure of the testes to descend into the scrotum (cryptorchidism) by the first year of life in affected males, and/or other symptoms and findings.
Noonan syndrome is a genetically heterogeneous condition that may be caused by mutations in a number of genes, including PTPN11, KRAS, SOS1, RAF1, NRAS, RIT1 and SOS2 (For more information on this disorder, choose “Noonan” as your search term in the Rare Disease Database.)
Robinow syndrome is a rare genetic disorder inherited as both dominant and recessive trait and characterized by mild to moderate short stature due to growth delays after birth (postnatal growth retardation); distinctive abnormalities of the head and facial (craniofacial) area; additional skeletal malformations; and/or genital abnormalities.
The facial features of infants with Robinow syndrome resemble those of an eight-week-old fetus; within the medical literature, this condition is often referred to as “fetal face.” Characteristic craniofacial features may include an abnormally large head (macrocephaly) with a bulging forehead (frontal bossing); widely spaced eyes (ocular hypertelorism) that are abnormally prominent; a small, upturned nose with nostrils that are flared forward (anteverted); and/or a sunken (depressed) nasal bridge.
Skeletal malformations may include forearm bones (radius and ulna) that are unusually short (forearm brachymelia), abnormally short fingers and toes, permanent fixation of the fifth fingers in a bent position (clinodactyly), unusually small hands with broad thumbs, malformation of the ribs, abnormal side-to-side curvature of the spine (scoliosis), and/or underdevelopment of one side of the bones in the middle (thoracic) portion of the spinal column (hemivertebrae).
Genital abnormalities associated with Robinow syndrome may include an abnormally small penis (micropenis) and failure of the testes to descend into the scrotum (cryptorchidism) in affected males and underdevelopment (hypoplasia) of the clitoris and the outer, elongated folds of skin on either side of the vaginal opening (labia majora) in affected females. The range and severity of symptoms vary from case to case. The Robinow syndrome is a genetically heterogeneous condition that may be caused by mutations in different genes, such as WNT5A, ROR2, DVL3 and DVL1 (For more information on this disorder, choose “Robinow” as your search term in the Rare Disease Database.)
“LEOPARD,” an acronym for the characteristic abnormalities associated with the disorder, stands for (L)entigines, multiple black or dark brown “freckle-like” spots on the skin; (E)lectrocardiographic conduction defects, abnormalities of the electrical activity–and the coordination of proper contractions–of the heart; (0)cular hypertelorism, widely-spaced eyes; (P)ulmonary stenosis, obstruction of the normal outflow of blood from the lower right chamber (ventricle) of the heart; (A)bnormalities of the genitals; (R)etarded growth resulting in short stature; and (D)eafness or hearing loss due to malfunction of the inner ear (sensorineural deafness).
Some individuals with LEOPARD Syndrome may also exhibit mild mental retardation, speech difficulties, and/or, in some cases, additional physical abnormalities. In most cases, LEOPARD Syndrome appears to occur randomly for unknown reasons (sporadically). However, in other cases, the disorder is thought to be inherited as an autosomal dominant trait. The LEOPARD syndrome is a genetically heterogeneous condition that may be caused by mutations in different genes, such as RAF1, BRAF and PTPN11 (For more information on this disorder, choose “LEOPARD” as your search term in the Rare Disease Database.)
Diagnosis
A diagnosis of Aarskog syndrome may be considered based upon a thorough clinical evaluation, a detailed patient and family history, and the identification of characteristic findings. Molecular genetic testing for FGD1 gene mutations is available to confirm the diagnosis. If a FGD1 gene mutation is not identified, molecular genetic testing for genes associated with similar conditions may be suggested, such as the ROR2 and WNT5A genes associated with Robinow syndrome.
Standard Therapies
Treatment
The treatment of Aarskog syndrome is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. Pediatricians, surgeons, cardiologists, dental specialists, speech pathologists, specialists who asses and treat hearing problems (audiologists), eye specialists, and other health care professionals may need to systematically and comprehensively plan an affected child’s treatment.
Surgery may be necessary to treat specific congenital or structural malformations sometimes associated with Aarskog syndrome (hypospadias, inguinal or umbilical hernias, cryptorchidism, unusually severe craniofacial features). Individuals with Aarskog syndrome should receive complete eye and dental evaluations. Growth hormone treatment has been reported to improve height in some children, but confirmation is needed to determine appropriate management and expectations for response. For the possibly neurodevelopmental symptoms, a neuropsychiatric evaluation and input may be indicated. Other treatment is symptomatic and supportive.
Genetic counseling is recommended for affected individuals and their families to clarify the genetic and clinical characteristics, the inheritance, and the recurrence risks of the condition in their families.
For more information visit us our website: https://www.healthinfi.com
0 200
No Comments